IMINODIPEPTIDES CONTAINING PROLINE WITH C-TERMINAL AND N-TERMINAL RESIDUES PRIME THE STIMULATION OF HUMAN NEUTROPHIL SUPEROXIDE GENERATION BY fMLP

Yoshiya Watanabe¹, Yasuhiro Sagara¹, Kazunori Sugahara², and Hiroyuki Kodama²,*

Departments of ¹Medical Biology and ²Chemistry, Kochi Medical School, Okohcho, Nankoku, Kochi 783, Japan

Received October 17, 1994

Preincubation of human peripheral blood polymophonuclear leukocytes with an iminodipeptide containing proline at the C-terminus and/or N-terminus, Pro-Pro, Gly-Pro, Pro-Gly, Ala-Pro and Pro-Ala, significantly enhanced N-formyl-methionyl-leucyl-phenylalanine-induced superoxide generation in a concentration-dependent manner. The iminodipeptide with C-terminal proline showed higher effect than that of the counterpart with N-terminal proline. These iminodipeptides also enhanced the superoxide generation induced by opsonized zymosan but not that induced by arachidonic acid or phorbol myristate acetate. Tyrosyl phosphorylation of the 45-kDa protein occurred in parallel with the iminodipeptide-dependent enhancement of superoxide generation in neutrophil.

© 1994 Academic Press, Inc.

Stimulation of polymorphonuclear leukocytes (PMN) by soluble and particulate stimuli triggers rapid and massive production of superoxide anion (O_2^-) , so-called "respiratory burst", which plays an important role in the killing of bacteria and in host tissue damage [1-3]. Various compounds such as N-formyl-methionyl-leucylphenylalanine (fMLP), opsonized zymosan (OZ), phorbol 12-myristate 13-acetate (PMA) and arachidonic acid (AA) are known as the stimuli [4]. Although the responsibility of PMN to agonist is low in the basal condition, preincubation of PMN with nonstimulatory concentrations of agonists or some pharmacological agents and hypotonic treatment of the cells accelerate and potentiate the respiratory burst induced by a second stimulus [5-12]. This phenomenon, termed "priming", may account for the exaggerated physiological responses of human peripheral blood polymophonuclear leukocytes (HPPMN). Priming and stimulation of PMN has been proposed to occur through different mechanisms [13, 14] while they still remain to be clarified. Recently, several reports described that various cytokines and hypotonic condition enhanced the tyrosyl phosphorylation of specific proteins in HPPMN in the primed stage, suggesting the

^{*}To whom correspondence should be addressed. Fax: +81-888-66-6177.

contribution of tyrosine kinase (TK) to the regulatory mechanism of priming in neutrophils [11, 14-16].

Prolidase (EC. 3, 4, 13, 9) deficiency is a rare autosomal recessive disease characterized by chronic ulcerative dermatitis and mental retardation [17, 18]. It has been known that these patients excrete large amounts of iminodipeptides in the urine, and we recently reported that the iminodipeptides are also increased in serum of the patients by using LC/APCI-MS [19, 20].

In the present study, we examined the effect of various iminodipeptides containing proline at the C-terminus and/or N-terminus on the stimulation-coupled responses of HPPMN.

MATERIALS AND METHODS

Chemicals: NADPH, Ferricytochrome c (cyt. c), superoxide dismutase, fMLP, zymosan, PMA, AA, amino acids, iminodipeptides and iminotripepides were purchased from Sigma Chemical Co. All other reagents used were of analytical grade and were from Nacalai Tesque Inc.

Isolation of neutrophils: HPPMN were isolated from the peripheral blood of healthy humans by Ficoll-Hypaque (Flow Laboratories) density gradient centrifugation [21] and were washed twice with Krebs-Ringer-phosphate solution (KRP; pH 7.4) [22]. The cells were counted and resuspended in KRP at a concentration of 1x10⁸ cells/ml.

Assay of superoxide generation: The O_2^- generation was assayed by measuring the reduction of cyt. c at 37 °C using a dual-beam spectrophotometer (Shimadzu UV-3000) under continuous stirring [14]. Four different compounds were employed as the stimuli of neutrophils; fMLP (12.5 nM), OZ (200 μ g/ml), PMA (1 nM) and AA (5 μ M). Stock solutions of fMLP, PMA and AA were prepared with ethanol. OZ was prepared according to the method of Nagata and Yamashita [23]. The standard assay mixture consisted of 1×10^6 cells/ml, 1 mM CaCl₂, 20 μ M cyt. c, 10 mM glucose and a stimulus in a final volume of 2 ml KRP. After a preincubation for 3 min with various concentrations of the priming compound, the reaction was started by adding the stimulus and the absorbance change at 550-540 nm (Δ A550-540) was monitored.

Detection of tyrosyl phosphorylation of neutrophil proteins: Neutrophils (1 x 10⁶ cells) were incubated in 1 ml KRP containing 1 mM CaCl₂, 10 mM glucose and 0 - 200 μM of Pro-Pro for 3 min at 37 °C, then 0.5 ml of ice-cold 45 % trichloroacetic acid (final concentration 15 %) containing 1 mM sodium vanadate and 2 mM phenylmethylsulfonylfluoride was added to the reaction mixture. After an incubation for 60 min at 4 °C, the mixture was centrifuged at 10,000 x g for 15 min at 4 °C. The precipitate was washed twice with ice-cold ether/ethanol (1/1) and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) [24] with 7.5 % gel. The electrophoresed proteins were transferred onto Imobilon-P membrane (Nippon Millipore Ltd.) using a semidry blotting apparatus (Sartorius) for 35 min at 4.4 mA/cm², and the tyrosyl phosphorylated proteins were detected using phosphotyrosine-specific monoclonal antibody (PY-20; ICN Biochemicals, Inc.), peroxidase-conjugated rabbit anti-mouse IgG antibody (E. Y. Laboratories, Inc.), and ECL Western Blotting Detection System (Amersham Japan Co.), as described elsewhere [25]. Molecular weights of the proteins were determined using Prestained Molecular Weight Standards (14,300 - 200,000 molecular weight range; GIBCO BRL).

RESULTS AND DISCUSSION

The patients with profidase deficiency had large amounts of iminodipeptides, such as Pro-Pro, in the serum [19, 20] and chronic ulcerative dermatitis. In this experiment,

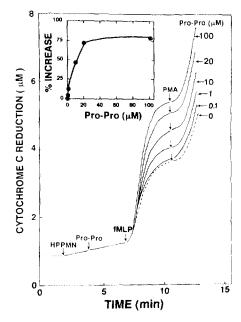
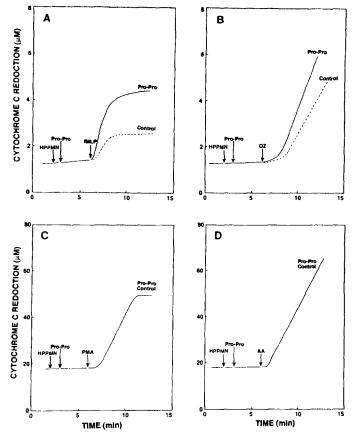



Figure 1. Effect of Pro-Pro on the fMLP-induced O_2^- generation in HPPMN. The neutrophils were preincubated with $0 - 100 \,\mu\text{M}$ of Pro-Pro for 3 min at 37 °C prior to the assay of fMLP-induced O_2^- generation. The assays were carried out as described under MATERIALS AND METHODS except that I nM PMA was added to the reaction mixture 4 min after the addition of fMLP. The inset shows the relative increase of the O_2^- generation 3 min after the addition of fMLP.

at first, we examined the effect of the various iminodipeptides found in the serum of the patients on the fMLP-dependent increase of O_2^- generation by HPPMN. When the cells were preincubated with Pro-Pro for 3 min, the fMLP-induced O_2^- generation was significantly enhanced in a concentration-dependent manner (Fig. 1). The enhancing effect reached almost plateau level at 20 μ M Pro-Pro (Fig. 1, inset) and by 3 min for the preincubation time (data not shown). Furthermore, when PMA was added to the reaction mixture, the O_2^- generation was further increased but the enhancement was independent to the presence of Pro-Pro (Fig. 1 and Fig. 2C). These results indicate that Pro-Pro is a typical priming factor for the agonist-mediated respiration burst of neutrophil.

Table 1 summarizes the contribution of various amino acids and peptides on the fMLP-stimulated O_2^- generation by HPPMN. Among the iminodipeptides containing proline at its C-terminus, not only Pro-Pro but also Gly-Pro and Ala-Pro showed similar stimulative action on the fMLP-induced O_2^- generation, but Ser-Pro, Val-Pro, Leu-Pro and Phe-Pro gave no effect. The iminodipeptides containing hydroxyproline at the C-terminus, Pro-Hyp and Gly-Hyp, did not show stimulative action on the O_2^- generation induced by fMLP. The rates of enhancement by these iminodipeptides follow in the order: Pro-Pro > Gly-Pro > Ala-Pro >> Ser-Pro and Pro-Hyp. On the other hand, the iminodipeptides containing proline at the N-terminus, Pro-Ala and Pro-Gly also showed the stimulative action on the O_2^- generation induced by fMLP. The rates of enhancement

Figure 2. Stimulus-specific effect of Pro-Pro on the O_2^- generation in HPPMN. The neutrophils were preincubated with $100~\mu\text{M}$ Pro-Pro for 3 min at 37 °C prior to the assay of each stimulus-induced O_2^- generation. The assays were carried out as described under MATERIALS AND METHODS. The final concentration of fMLP (A), OZ (B), PMA (C) and AA (D) added was 12.5 nM, 200 $\mu\text{g/ml}$, 1 nM and 5 μM , respectively. In the control experiments, the same volume of KRP instead of Pro-Pro was added to the reaction mixture.

Table 1. Effect of amino acids and peptides on the fMLP-induced O_2^- generation in HPPMN. The neutrophils were preincubated with $100 \, \mu \text{M}$ of the priming compound for 3 min at 37 °C prior to the assay of fMLP-induced O_2^- generation. The assays were carried out as described under MATERIALS AND METHODS.

Peptides and Amino acids	% of control	
control*	100	
Pro	102	
Gly	100	
Pro-Pro	182	
Gly-Pro	168	
Ala-Pro	133	
Ser-Pro	100	
Val-Pro	100	
Leu-Pro	100	
Phe-Pro	100	
Pro-Gly	147	
Pro-Ala	122	
Pro-Hyp	100	
Gly-Hyp	100	
Gly-Gly	100	
Pro-Gly-Gly	100	
Gly-Gly-Pro	100	
Gly-Hyp-Pro	100	
Gly-Pro-Ala	100	

^{*}Without the priming compound.

Effects of Pro-Pro on the O_2^- generation of HPPMN induced by two types of stimuli are shown in Fig. 2. fMLP and OZ were used as the inducer of the receptor-mediated activation of neutrophils. OZ was also used as a phagocytic ligand, since OZ-response is mediated by the receptor of C3b [26]. AA and PMA were used as a membrane perturber and an activator of Ca²⁺- and phospholipid-dependent protein kinase C [27], respectively. The stimulative action of Pro-Pro similar to that on the fMLP-induced O_2^- generation of HPPMN was observed on the OZ-induced O_2^- generation but not on those induced by PMA or AA. The rates of enhancement by Pro-Pro follow in the order: fMLP > OZ >> PMA and AA, suggesting that the mechanism for priming of HPPMN by Pro-Pro may also involve tyrosine kinase (TK) since the contribution of TK to the priming of HPPMN by tumor necrosis factor has been reported [25].

fMLP-induced phosphorylation of tyrosine residues of HPPMN proteins has been detected by immunoblotting with anti-phosphotyrosine antibody [27, 28]. Using this method, the effect of Pro-Pro on the phosphorylation of tyrosine residues was studied with HPPMN. Non-consistent with previous observations by Gometz-Cambronero et al. [28], phosphorylated tyrosines were detected in the HPPMN proteins with molecular weight of 45, 38, 32 and 23 kDa (Fig. 3). When incubated with Pro-Pro, phosphorylation of 45 kDa protein markedly increased with time and the phosphorylation depended on the concentration of Pro-Pro. This result is consistent with that reported by Azuma et al. [16] who observed the phosphorylation of 42 kDa protein. The

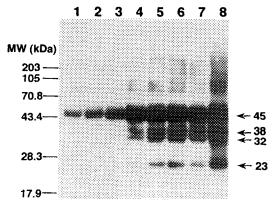


Figure 3. Dose dependent tyrosyl phosphorylation of HPPMN proteins by Pro-Pro. The neutrophils were incubated with $0 - 200 \mu M$ of Pro-Pro then the tyrosyl phosphorylated proteins were detected using phosphotyrosine-specific monoclonal antibody (PY-20) as described under MATERIALS AND METHODS. Lane 1, without Pro-Pro; Lanes 2 - 8, with 1, 5, 10, 20, 50, 100 and $200 \mu M$ Pro-Pro, respectively.

phosphorylation of tyrosyl residues of the 45 kDa protein increased parallel with O₂⁻ generation, and similar enhancement of tyrosyl phosphorylation of the 45 kDa protein was also caused by Gly-Pro (data not shown). These findings suggest that the priming of HPPMN induced by Pro-Pro might be coupled with tyrosyl phosphorylation of cellular proteins, such as the 45 kDa protein. The mechanism of tyrosyl phosphorylation by Pro-Pro is not known yet, but the stimulation of TK by these ligands might occur by some G-protein-dependent mechanism, as reported Akimaru *et al.* [25].

In this study, we found new priming factors, Pro-Pro and several iminodipeptides containing proline, for fMLP-induced O_2^- generation of HPPMN. By using Pro-Pro, the plateau level of the priming effect was given by $20 \,\mu\text{M}$ (Fig. 1, inset). This value is about 1/10 of the concentration found in the serum of the patients with prolidase deficiency, $200 \,\mu\text{M}$ [20]. This fact suggests that this priming may occur in the peripheral blood of the patient and that PMN of the patient has been primed by the iminodipeptides. Thus, enhancement of tyrosyl phosphorylation of HPPMN by Pro-Pro seems to underlie the triggering mechanism for priming-dependent respiratory burst. The study on the mechanism of O_2^- generation and TK activation in HPPMN primed by Pro-Pro would be the way to clarify the relationships between clinical symptoms and collagen metabolism in patients with prolidase deficiency.

<u>Acknowledgments</u>: We would like to thank Dr. Masanobu Miyahara for his helpful suggestions in this experiment. We are also deeply grateful to Dr. Kozo Utsumi for his kind advice on this manuscript.

REFERENCES

1. Babior, B.M. (1978) N. Engl. J. Med. 298, 659-668

 Klebanoff, S. J., Vadas, M. A., Harlan, J. M., Sparks, L. H., Gamble, J. R., Agosti, J. M. and Waltersdorph, A. M. (1986) J. Immunol. 136, 4220-4225

- Clark, R. A. (1990) J. Infect. Dis. 161, 1140-1147
- 4. Takahashi, R., Edashige, K., Sato, E. F., Inoue, M., Matsuno, T. and
- Utsumi, K. (1991) Arch. Biochem. Biophys. 285, 325-330 McCall, C. E., Bass, D. A., Dechatelt, L. R., Link Jr., A. S. and Mann, M. 5. (1979) J. Infect. Dis. 140, 277-286
- McPhail, L. C., Clayton, C. C. and Snyderman, R. (1983) J. Biol. Chem. 259, 5768-5775 6.
- 7. Perianin, A., Snyderman, R. and Malfroy, B. (1989) Biochem. Biophys. Res. Commun. 161, 520-524
- Combadière, C., Hakim, J., Giroud, J. P. and Périain, A (1990) 8. Biochem. Biophys. Res. Commun. 168, 65-70
- 9. Utsumi, T., Klostergaard, J., Akimaru, K., Sato, E. F., Yoshioka, T. and Utsumi, K. (1992) Physiol. Chem. Phys. Med. NMR 24, 77-88
- Yuo, A., Kitagawa, S., Ohsaka, A., Saito, M. and Takaku, F. (1990) 10. Biochem. Biophys. Res. Commun. 171, 491-497
- 11. Edashige, K., Watanabe, Y., Sato, E. F., Takehara, Y. and Utsumi, K. (1993)
- Arch. Biochem. Biophys. 302, 343-347 Miyahara, M., Watanabe, Y., Edashige, K. and Yagyu, K.-i. (1993) Biochim. Biophys. Acta 1177, 61-70 12.
- 13. Bass, D. A., Gerard, C., Olbrantz, P., Wilson, J., McCall, C. E. and McPhail, L. C. (1987) J. Biol. Chem. 262, 6643-6649
- Utsumi, T., Klostergaard, J., Akimaru, K., Edashige, K., Sato, E. F. and 14. Utsumi. K (1992) Arch. Biochem. Biophys. 294, 271-278
- McColl, S. R., DiPersio, J. F., Caon, A. C., Ho, P. and Naccache, P. H. 15. (1991) Blood 78, 1842-1852
- 16. Azuma, E. K., Kitagawa, S., Yuo, A., Mizoguchi, H., Umezawa, K.
- Takaku, F. and Saito, M. (1993) *Biochim. Biophys. Acta* 1179, 213-223 Goodman, S. I., Solomons, C. C., Muschenheim, F., McIntyre, C. A., 17. Miles, B. and O'Brien, D. (1968) Am. J. Med. 45, 152-159
- 18. Powell, G. F., Rasco, M. A. and Maniscalco, R. M. (1974) Metabolism 23, 505-513
- 19. Kodama, H., Nakamura, H., Sugahara, K. and Numajiri, Y. (1990) J. Chromatogr. 527, 279-288
- 20. Sugahara, S., Zhang, J., Yamamoto, Y., Yasuda, K., Kodama, H. and Kodama, H. (1994) Eur. J. Clin. Chem. Clin. Biochem. 32, 113-117
- 21. Weiss, S. J., Klein, R., Slivka, A., and Wei, M. (1982) J. Clin. Invest. 70, 598-607
- Yamamoto, M., Saeki, K. and Utsumi, K. (1991) 22. Arch. Biochem. Biophys. 289, 76-82
- 23. Nagaoka, I. and Yamashita, T. (1981) Biochim. Biophys. Acta 675, 85-93
- 24.
- Laemmli, U.K. (1970) Nature 227, 680-685 Akimaru, K., Utsumi, T., Sato, E. F., Klostergaard, J., Inoue, M. and 25. Utsumi, K. (1992) Arch. Biochem. Biophys. 298, 703-709
- Stossel, T. P., Field, R. J., Gitlin, J. D., Alper, C. A. and Rosen, F. S. (1975) 26. J. Exp. Med. 141, 1329-1347
- 27. Huang, C. K., Laramee, G. R. and Casnellie, J. E. (1988) Biochem. Biophys. Res. Commun. 151, 794-801
- Gomez-Cambronero, J., Yamazaki, M., Metwally, F., Molski, T. F. P., 28. Bonak, V. A., Huang, C. K., Becker, E. L. and Scha'afi, R. I. (1989) Proc. Natl. Acad. Sci. USA 86, 3569-3573